Quantum symmetries of the twisted tensor products of C*-algebras

Sutanu Roy

School of Mathematical Sciences NISER Bhubaneswar

joint work with Jyotishman Bhowmick, Arnab Mandal, Adam Skalski appeared in Commun. Math. Phys.

November 29, 2018

NCG: Physical and Mathematical aspects of Quantum Space-Time and Matter S. N. Bose National Center for Basic Sciences, Kolkata

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

► Wang: quantum permutation groups and quantum symmetry groups of finite-dimensional C*-algebras equipped with reference states.

Banica, Bichon: finite metric spaces and finite graphs.

Raum, Schmidt, Speicher, Weber, Joardar, Mandal: several interesting connections to combinatorics, representation theory and free probability

Goswami: quantum isometry groups associated to a given spectral triple á la Connes.

Quantum isometry groups associated to the spectral triples for group C^{*}-algebras of discrete groups

- ► **Wang**: quantum permutation groups and quantum symmetry groups of finite-dimensional C*-algebras equipped with reference states.
- Banica, Bichon: finite metric spaces and finite graphs.
 Raum, Schmidt, Speicher, Weber, Joardar, Mandal: several interesting connections to combinatorics, representation theory and free probability
- **Goswami**: quantum isometry groups associated to a given spectral triple á la Connes.

Quantum isometry groups associated to the spectral triples for group C^* -algebras of discrete groups

► **Wang**: quantum permutation groups and quantum symmetry groups of finite-dimensional C*-algebras equipped with reference states.

Banica, Bichon: finite metric spaces and finite graphs. Raum, Schmidt, Speicher, Weber, Joardar, Mandal:

> several interesting connections to combinatorics, representation theory and free probability

 Goswami: quantum isometry groups associated to a given spectral triple á la Connes.

Quantum isometry groups associated to the spectral triples for group C^* -algebras of discrete groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

► **Banica-Skalski**: a new framework of *quantum symmetry groups* based on *orthogonal filtrations* of unital C*-algebras.

► Wang: quantum permutation groups and quantum symmetry groups of finite-dimensional C*-algebras equipped with reference states.

Banica, Bichon: finite metric spaces and finite graphs. Raum, Schmidt, Speicher, Weber, Joardar, Mandal:

several interesting connections to combinatorics, representation theory and free probability

 Goswami: quantum isometry groups associated to a given spectral triple á la Connes.

Quantum isometry groups associated to the spectral triples for group C^* *-algebras of discrete groups*

Banica-Skalski: a new framework of *quantum symmetry groups* based on *orthogonal filtrations* of unital C*-algebras.

Orthogonal filtration of C*-algebras

Definition (Banica-Skalski, 2013; de Chanvalon, 2014)

Let *A* be a unital C*-algebra and let τ_A be a faithful state on *A*. An *orthogonal filtration* for the pair (A, τ_A) is a sequence of finite dimensional subspaces $\{A_i\}_{i\geq 0}$ such that $A_0 = \mathbb{C}1_A$, Span $\cup_{i\geq 0} A_i$ is dense in *A* and $\tau_A(a^*b) = 0$ if $a \in A_i$, $b \in A_j$ and $i \neq j$. We will usually write \mathcal{A} for the triple $(A, \tau_A, \{A_i\}_{i\geq 0})$.

Example

Let Γ be a finitely generated discrete group endowed with a proper length function *l*. Then $B_n^l = \text{span}\{\lambda_g \mid l(g) = n\}, n \ge 0$, forms a filtration for the pair $(C_r^*(\Gamma), \tau_{\Gamma})$ where τ_{Γ} is the canonical trace on $C_r^*(\Gamma)$. We denote $\mathcal{B} = (C_r^*(\Gamma), \tau_{\Gamma}, \{B_n^l\}_{n\ge 0})$.

Orthogonal filtration of C*-algebras

Definition (Banica-Skalski, 2013; de Chanvalon, 2014)

Let *A* be a unital C*-algebra and let τ_A be a faithful state on *A*. An *orthogonal filtration* for the pair (A, τ_A) is a sequence of finite dimensional subspaces $\{A_i\}_{i\geq 0}$ such that $A_0 = \mathbb{C}1_A$, Span $\cup_{i\geq 0} A_i$ is dense in *A* and $\tau_A(a^*b) = 0$ if $a \in A_i$, $b \in A_j$ and $i \neq j$. We will usually write \mathcal{A} for the triple $(A, \tau_A, \{A_i\}_{i\geq 0})$.

Example

Let Γ be a finitely generated discrete group endowed with a proper length function *l*. Then $B_n^l = \operatorname{span}\{\lambda_g \mid l(g) = n\}, n \ge 0$, forms a filtration for the pair $(C_r^*(\Gamma), \tau_{\Gamma})$ where τ_{Γ} is the canonical trace on $C_r^*(\Gamma)$. We denote $\mathcal{B} = (C_r^*(\Gamma), \tau_{\Gamma}, \{B_n^l\}_{n\ge 0})$.

Compact quantum groups

Definition (Woronowicz, 1995)

A *compact quantum group* (CQG) is a pair $\mathbb{G} = (A, \Delta_A)$ consisting of a unital C*-algebra *A* and a unital *-homomorphism $\Delta_A : A \to A \otimes A$ such that

- 1. Δ_A is coassociative: $(\Delta_A \otimes id_A)\Delta_A = (id_A \otimes \Delta_A)\Delta_A$,
- 2. Δ_A satisfies cancellation properties: $\Delta_A(A)(1_A \otimes A) = A \otimes A = \Delta_A(A)(A \otimes 1_A).$

We denote A and Δ_A by $C(\mathbb{G})$ and $\Delta_{\mathbb{G}}$ respectively.

- The dual of a CQG is a discrete group $C_0(\widehat{\mathbb{G}})$.
- ▶ There is a unique $W^{\mathbb{G}} \in \mathcal{U}(C_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}))$ which encodes the pairing between \mathbb{G} and $\widehat{\mathbb{G}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Compact quantum groups

Example

- For any compact group G, the unital C*-algebra C(G) along with $\Delta: C(G) \rightarrow C(G \times G)$ defined by $(\Delta f)(x, y) = f(xy)$ is a CQG.
- For any discrete group Γ , the unital C*-algebra $C_r^*(\Gamma)$ or C*(Γ) along with $\Delta : C_r^*(\Gamma) \to C_r^*(\Gamma \times \Gamma)$ or $\Delta : C^*(\Gamma) \to C^*(\Gamma \times \Gamma)$ defined by $\Delta(x) = x \otimes x$ is a CQG.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Coaction of compact quantum groups

Definition

A (*right*) *coaction* of C(\mathbb{G}) (or an *action* of \mathbb{G}) on a unital C*-algebra *A* is a unital *-homomorphism $\gamma: A \to A \otimes C(\mathbb{G})$ with the following properties

1. γ is a comodule structure:

$$(\mathrm{id}_A\otimes\Delta_\mathbb{G})\gamma=(\gamma\otimes\mathrm{id}_C)\gamma;$$

2. γ satisfies the *Podles condition*:

$$\gamma(A)(1_A\otimes C)=A\otimes C.$$

Similarly, one can consider coaction of $C^u(\mathbb{G})$ on unital C^{*}-algebras.

Theorem (Fischer, 2003)

In fact, every *injective* coaction γ of $C(\mathbb{G})$ on A lifts to a unique universal coaction γ^{u} of $C^{u}(\mathbb{G})$ on A.

Coaction of compact quantum groups

Definition

A (*right*) *coaction* of C(\mathbb{G}) (or an *action* of \mathbb{G}) on a unital C*-algebra *A* is a unital *-homomorphism $\gamma: A \to A \otimes C(\mathbb{G})$ with the following properties

1. γ is a comodule structure:

$$(\mathrm{id}_A\otimes\Delta_\mathbb{G})\gamma=(\gamma\otimes\mathrm{id}_C)\gamma;$$

2. γ satisfies the *Podles condition*:

$$\gamma(A)(1_A\otimes C)=A\otimes C.$$

Similarly, one can consider coaction of $C^u(\mathbb{G})$ on unital C^* -algebras.

Theorem (Fischer, 2003)

In fact, every *injective* coaction γ of $C(\mathbb{G})$ on A lifts to a unique universal coaction γ^{u} of $C^{u}(\mathbb{G})$ on A.

Coaction of compact quantum groups

Definition

A (*right*) *coaction* of C(\mathbb{G}) (or an *action* of \mathbb{G}) on a unital C*-algebra *A* is a unital *-homomorphism $\gamma: A \to A \otimes C(\mathbb{G})$ with the following properties

1. γ is a comodule structure:

$$(\mathrm{id}_A\otimes\Delta_\mathbb{G})\gamma=(\gamma\otimes\mathrm{id}_C)\gamma;$$

2. γ satisfies the *Podles' condition*:

$$\gamma(A)(1_A\otimes C)=A\otimes C.$$

Similarly, one can consider coaction of $C^u(\mathbb{G})$ on unital C^* -algebras.

Theorem (Fischer, 2003)

In fact, every *injective* coaction γ of $C(\mathbb{G})$ on A lifts to a unique universal coaction γ^{u} of $C^{u}(\mathbb{G})$ on A.

CQG morphisms

Let G and H be CQGs. A unital *-homomorphism f: C(G) → C(H) is said to be a CQG morphism if it satisfies the following condition:

$$\Delta_{\mathbb{H}} \circ f = (f \otimes f) \Delta_{\mathbb{G}}.$$

Let A be a unital C*-algebra and let γ₁: A → A ⊗ C(G) and γ₂: A → A ⊗ C(H) be coactions.
 A CQG morphism f: C(G) → C(H) *intertwines* the coactions γ₁ and γ₂ if

 $(\mathrm{id}_A\otimes f)\gamma_1=\gamma_2$

CQG morphisms

Let G and H be CQGs. A unital *-homomorphism f: C(G) → C(H) is said to be a CQG morphism if it satisfies the following condition:

$$\Delta_{\mathbb{H}} \circ f = (f \otimes f) \Delta_{\mathbb{G}}.$$

Let A be a unital C*-algebra and let γ₁: A → A ⊗ C(G) and γ₂: A → A ⊗ C(H) be coactions.
 A CQG morphism f: C(G) → C(H) *intertwines* the coactions γ₁ and γ₂ if

$$(\mathrm{id}_A\otimes f)\gamma_1=\gamma_2$$

Let $\mathcal{A} = (A, \tau_A, \{A_i\}_{i \ge 0})$ be an orthogonal filtration. Let $\mathcal{C}(\mathcal{A})$ be the category with objects as pairs (\mathbb{G}, α) where

- ▶ G is a compact quantum group
- α is an action of \mathbb{G} on A such that $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ for each $i \ge 0$
- morphisms being CQG morphisms intertwining the respective actions.

Theorem (Banica-Skalski, 2013)

There exists a universal initial object in the category C(A) called the *quantum symmetry group* of the filtration A and denoted by QISO(A). Moreover the action of QISO(A) on A is *faithful*.

Remark

The condition $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ implies that the action α preserves the state τ_A . Converse is not true!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Let $\mathcal{A} = (A, \tau_A, \{A_i\}_{i \ge 0})$ be an orthogonal filtration. Let $\mathcal{C}(\mathcal{A})$ be the category with objects as pairs (\mathbb{G}, α) where

- ▶ G is a compact quantum group
- α is an action of \mathbb{G} on A such that $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ for each $i \ge 0$
- morphisms being CQG morphisms intertwining the respective actions.

Theorem (Banica-Skalski, 2013)

There exists a universal initial object in the category C(A) called the *quantum symmetry group* of the filtration A and denoted by QISO(A). Moreover the action of QISO(A) on A is *faithful*.

Remark

The condition $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ implies that the action α preserves the state τ_A . Converse is not true!

Let $\mathcal{A} = (A, \tau_A, \{A_i\}_{i \ge 0})$ be an orthogonal filtration. Let $\mathcal{C}(\mathcal{A})$ be the category with objects as pairs (\mathbb{G}, α) where

- ▶ G is a compact quantum group
- α is an action of \mathbb{G} on A such that $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ for each $i \ge 0$
- morphisms being CQG morphisms intertwining the respective actions.

Theorem (Banica-Skalski, 2013)

There exists a universal initial object in the category C(A) called the *quantum symmetry group* of the filtration A and denoted by QISO(A). Moreover the action of QISO(A) on A is *faithful*.

Remark

The condition $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ implies that the action α preserves the state τ_A . Converse is not true!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $\mathcal{A} = (A, \tau_A, \{A_i\}_{i \ge 0})$ be an orthogonal filtration. Let $\mathcal{C}(\mathcal{A})$ be the category with objects as pairs (\mathbb{G}, α) where

- ▶ G is a compact quantum group
- α is an action of \mathbb{G} on A such that $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ for each $i \ge 0$
- morphisms being CQG morphisms intertwining the respective actions.

Theorem (Banica-Skalski, 2013)

There exists a universal initial object in the category C(A) called the *quantum symmetry group* of the filtration A and denoted by QISO(A). Moreover the action of QISO(A) on A is *faithful*.

Remark

The condition $\alpha(A_i) \subseteq A_i \otimes_{\text{alg}} \mathbb{C}(\mathbb{G})$ implies that the action α preserves the state τ_A . Converse is not true!

The starting point

Suppose that

- ► ${A_i}_{i\geq 0}$ be an orthogonal filtration for a pair (A, τ_A) .
- Γ be a discrete group with a length function.
- \triangleright Γ acts on A. Equivalently, there is a coaction

$$\beta: A \to \mathcal{M}(A \otimes \mathbf{C}_0(\Gamma)).$$

► The reduced crossed product:

$$A \rtimes_{\beta,r} \Gamma := \{\beta(a)(1 \otimes \lambda_g) \mid a \in A, g \in \Gamma\}^{\mathsf{CLS}}.$$

Question

What about the quantum symmetry group of $A \rtimes_{\beta,r} \Gamma$?

The starting point

Suppose that

- ► ${A_i}_{i\geq 0}$ be an orthogonal filtration for a pair (A, τ_A) .
- Γ be a discrete group with a length function.
- \triangleright Γ acts on A. Equivalently, there is a coaction

$$\beta: A \to \mathcal{M}(A \otimes \mathbf{C}_0(\Gamma)).$$

► The reduced crossed product:

$$A \rtimes_{\beta,r} \Gamma := \{\beta(a)(1 \otimes \lambda_g) \mid a \in A, g \in \Gamma\}^{\mathsf{CLS}}.$$

Question

What about the quantum symmetry group of $A \rtimes_{\beta,r} \Gamma$?

・ロト ・四ト ・ヨト ・ヨト ・ヨー

Quantum symmetries of reduced crossed products

We write

- $a\lambda_g$ for $\beta(a)(1 \otimes \lambda_g)$, where $a \in A, g \in \Gamma$.
- ► $\tau := \tau_A \circ \tau' \in S(A \rtimes_{\beta, \mathbf{r}} \Gamma)$, where τ' is the canonical conditional expectation from $A \rtimes_{\beta, \mathbf{r}} \Gamma$ onto *A* defined by the continuous linear extension of the prescription $\tau'(\sum_{g} a_g \lambda_g) = a_e$.

Finally, given the data as above define for each $i, j \ge 0$

$$A_{ij} = \operatorname{span}\{a_i \lambda_{\gamma_j} \mid a_i \in A_i, l(\gamma_j) = j\}.$$

Proposition (Bhowmick-Mandal-R.-Skalski, 2018)

Suppose Γ is a finitely generated discrete group having an action β on A such that $\tau_A(\beta_g(a)) = \tau_A(a)$ for all a in $A, g \in \Gamma$. Then the triplet $\mathcal{A} \rtimes_{\beta} \mathcal{B} = (A \rtimes_{\beta, \mathbf{r}} \Gamma, \tau, (A_{ij})_{i,j \ge 0})$ defines an orthogonal filtration of the C*-algebra $A \rtimes_{\beta, \mathbf{r}} \Gamma$.

An example: relations with the QISOs of the factors

• Consider
$$A = C^*(\mathbb{Z}_9)$$
, and $\Gamma = \mathbb{Z}_3$.

- Let ϕ be an automorphism of \mathbb{Z}_9 of order 3, given by the formula $\phi(n) = 4n$ for $n \in \mathbb{Z}_9$.
- ϕ induces an action $\beta \in Mor(A, A \otimes C(\mathbb{Z}_3))$ of \mathbb{Z}_3 on $A = C^*(\mathbb{Z}_9)$ defined by

$$\beta(\lambda_n) = \lambda_n \otimes \delta_{\overline{0}} + \lambda_{\phi(n)} \otimes \delta_{\overline{1}} + \lambda_{\phi^2(n)} \otimes \delta_{\overline{2}}.$$

C(QISO(C^{*}(ℤ₉) ⋊_β ℤ₃, τ, {U_n}_{n≥0})) is isomorphic to C^{*}(ℤ₉ ⋊_β ℤ₃) ⊕ C^{*}(ℤ₉ ⋊_β ℤ₃), so it has the vector space dimension equal 27 + 27 = 54.

On the other hand $\cdot \cdot$

· · · C(QISO(C*(\mathbb{Z}_n))) \cong C*(\mathbb{Z}_n) \oplus C*(\mathbb{Z}_n)($n \neq 4$). Hence, the vector space dimension of C(QISO(C*(\mathbb{Z}_9))) \otimes C(QISO(C*(\mathbb{Z}_3))) equals (9 + 9)(3 + 3) = 108.

An example: relations with the QISOs of the factors

• Consider
$$A = C^*(\mathbb{Z}_9)$$
, and $\Gamma = \mathbb{Z}_3$.

- Let ϕ be an automorphism of \mathbb{Z}_9 of order 3, given by the formula $\phi(n) = 4n$ for $n \in \mathbb{Z}_9$.
- ϕ induces an action $\beta \in Mor(A, A \otimes C(\mathbb{Z}_3))$ of \mathbb{Z}_3 on $A = C^*(\mathbb{Z}_9)$ defined by

$$\beta(\lambda_n) = \lambda_n \otimes \delta_{\overline{0}} + \lambda_{\phi(n)} \otimes \delta_{\overline{1}} + \lambda_{\phi^2(n)} \otimes \delta_{\overline{2}}.$$

C(QISO(C^{*}(ℤ₉) ⋊_β ℤ₃, τ, {U_n}_{n≥0})) is isomorphic to C^{*}(ℤ₉ ⋊_β ℤ₃) ⊕ C^{*}(ℤ₉ ⋊_β ℤ₃), so it has the vector space dimension equal 27 + 27 = 54.

On the other hand \cdots

· · · C(QISO(C*(\mathbb{Z}_n))) \cong C*(\mathbb{Z}_n) \oplus C*(\mathbb{Z}_n)($n \neq 4$). Hence, the vector space dimension of C(QISO(C*(\mathbb{Z}_9))) \otimes C(QISO(C*(\mathbb{Z}_3))) equals (9 + 9)(3 + 3) = 108.

QISO(C^{*}(\mathbb{Z}_9) $\rtimes_{\beta} \mathbb{Z}_3, \tau, \{U_n\}_{n \ge 0}$) is *much smaller* than QISO(C^{*}(\mathbb{Z}_9)) \otimes QISO(C^{*}(\mathbb{Z}_3))

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Suppose,

• $\mathcal{A} := (A, \tau_A, \{A_i\}_{i \ge 0})$ and $\mathcal{B} := (B, \tau_B, \{B_j\}_{j \ge 0})$ will denote orthogonal filtrations of unital C*-algebras A and B.

▶ γ_A and γ_B will denote the canonical coactions of C(QISO(\mathcal{A})) on *A* and C(QISO(\mathcal{B})) on *B*, respectively.

<ロト <回ト < 注ト < 注ト = 注

• $\chi \in \mathcal{UM}(C_0(\widehat{QISO(\mathcal{A})}) \otimes C_0(\widehat{QISO(\mathcal{B})}))$ is a bicharacter.

Thoerem (Meyer-R.-Woronowicz, 2012)

 χ is equivalent to

- is a Hopf *- (quantum group) homomorphism $f_{1} \in C(O(SO(A))) \rightarrow M(C(O(SO(B))))$
 - $f: \mathbb{C}(\mathbb{Q}^{1}SO(\mathcal{A})) \to \mathcal{M}(\mathbb{C}_{0}(\mathbb{Q}^{1}SO(\mathcal{B})))$
- is a Hopf *- (quantum group) homomorphism
 - $\hat{f}: C(QISO(\mathcal{B})) \to \mathcal{M}(C_0(QISO(\mathcal{A}))).$

Suppose,

- ► $\mathcal{A} := (A, \tau_A, \{A_i\}_{i \ge 0})$ and $\mathcal{B} := (B, \tau_B, \{B_j\}_{j \ge 0})$ will denote orthogonal filtrations of unital C*-algebras *A* and *B*.
- ▶ γ_A and γ_B will denote the canonical coactions of C(QISO(\mathcal{A})) on *A* and C(QISO(\mathcal{B})) on *B*, respectively.

《曰》 《聞》 《臣》 《臣》 三臣 …

• $\chi \in \mathcal{UM}(C_0(\widehat{QISO(\mathcal{A})}) \otimes C_0(\widehat{QISO(\mathcal{B})}))$ is a bicharacter.

Thoerem (Meyer-R.-Woronowicz, 2012)

 χ is equivalent to

is a Hopf *- (quantum group) homomorphism f: $C(OISO(4)) \rightarrow M(C(OISO(2)))$

- $f: \mathbb{C}(\mathbb{Q}^{1}SO(\mathcal{A})) \to \mathcal{M}(\mathbb{C}_{0}(\mathbb{Q}^{1}SO(\mathcal{B})))$
- is a Hopf *- (quantum group) homomorphism
 - $\hat{f}: C(QISO(\mathcal{B})) \to \mathcal{M}(C_0(QISO(\mathcal{A}))).$

Suppose,

- ► $\mathcal{A} := (A, \tau_A, \{A_i\}_{i \ge 0})$ and $\mathcal{B} := (B, \tau_B, \{B_j\}_{j \ge 0})$ will denote orthogonal filtrations of unital C*-algebras *A* and *B*.
- ▶ γ_A and γ_B will denote the canonical coactions of C(QISO(\mathcal{A})) on *A* and C(QISO(\mathcal{B})) on *B*, respectively.

< ロ > < 部 > < 표 > < 표 > · 표 ·

• $\chi \in \mathcal{UM}(C_0(\widetilde{QISO(\mathcal{A})}) \otimes C_0(\widetilde{QISO(\mathcal{B})}))$ is a bicharacter.

Thoerem (Meyer-R.-Woronowicz, 2012)

 χ is equivalent to

is a Hopf *- (quantum group) homomorphism

 $f \colon \mathrm{C}(\mathrm{QISO}(\mathcal{A})) \to \mathcal{M}(\mathrm{C}_0(\mathrm{QISO}(\mathcal{B})))$

- ▶ is a Hopf *- (quantum group) homomorphism
 - $\hat{f}: \mathbf{C}(\mathbf{QISO}(\mathcal{B})) \to \mathcal{M}(\mathbf{C}_0(\widetilde{\mathbf{QISO}(\mathcal{A})})).$

Suppose,

- ► $\mathcal{A} := (A, \tau_A, \{A_i\}_{i \ge 0})$ and $\mathcal{B} := (B, \tau_B, \{B_j\}_{j \ge 0})$ will denote orthogonal filtrations of unital C*-algebras *A* and *B*.
- ▶ γ_A and γ_B will denote the canonical coactions of C(QISO(\mathcal{A})) on *A* and C(QISO(\mathcal{B})) on *B*, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

► $\chi \in \mathcal{UM}(C_0(\widehat{\text{QISO}(\mathcal{A})}) \otimes C_0(\widehat{\text{QISO}(\mathcal{B})}))$ is a bicharacter.

Thoerem (Meyer-R.-Woronowicz, 2012)

 χ is equivalent to

is a Hopf *- (quantum group) homomorphism

 $f: \mathrm{C}(\mathrm{QISO}(\mathcal{A})) \to \mathcal{M}(\mathrm{C}_0(\mathrm{QISO}(\mathcal{B})))$

- ▶ is a Hopf *- (quantum group) homomorphism
 - $\hat{f}: C(QISO(\mathcal{B})) \to \mathcal{M}(C_0(QISO(\mathcal{A}))).$

Suppose,

- ► $\mathcal{A} := (A, \tau_A, \{A_i\}_{i \ge 0})$ and $\mathcal{B} := (B, \tau_B, \{B_j\}_{j \ge 0})$ will denote orthogonal filtrations of unital C*-algebras *A* and *B*.
- ▶ γ_A and γ_B will denote the canonical coactions of C(QISO(\mathcal{A})) on *A* and C(QISO(\mathcal{B})) on *B*, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

► $\chi \in \mathcal{UM}(C_0(\widehat{\text{QISO}(\mathcal{A})}) \otimes C_0(\widehat{\text{QISO}(\mathcal{B})}))$ is a bicharacter.

Thoerem (Meyer-R.-Woronowicz, 2012)

 χ is equivalent to

- ► is a Hopf *- (quantum group) homomorphism
 - $f: \mathrm{C}(\mathrm{QISO}(\mathcal{A})) \to \mathcal{M}(\mathrm{C}_0(\mathrm{QISO}(\mathcal{B})))$
- ▶ is a Hopf *- (quantum group) homomorphism
 - $\hat{f}: \mathbf{C}(\mathbf{QISO}(\mathcal{B})) \to \mathcal{M}(\mathbf{C}_0(\widehat{\mathbf{QISO}(\mathcal{A})})).$

The twisted tensor product $A \boxtimes_{\chi} B$

Theorem (Meyer-R.-Woronowicz, 2014)

D

The bicharacter χ gives a rise to a faithful χ-Heisenberg: a pair (of non-degenerate representations) (π₁, π₂) of C(QISO(A)) and C(QISO(B)) on a suitable Hilbert space H satisfying the following commutation relation

$$\begin{aligned} & \left((\mathrm{id} \otimes \pi_1) \mathrm{W}^{\mathrm{QISO}(\mathcal{A})} \right)_{13} \left((\mathrm{id} \otimes \pi_2) \mathrm{W}^{\mathrm{QISO}(\mathcal{B})} \right)_{23} \\ &= \left((\mathrm{id} \otimes \pi_2) \mathrm{W}^{\mathrm{QISO}(\mathcal{B})} \right)_{23} \left((\mathrm{id} \otimes \pi_1) \mathrm{W}^{\mathrm{QISO}(\mathcal{A})} \right)_{13} \chi_{12}. \end{aligned}$$

$$j_{A}: A \xrightarrow{\gamma_{A}} A \otimes C(QISO(\mathcal{A})) \xrightarrow{(\mathrm{id}_{A} \otimes \pi_{1})_{13}} \mathcal{M}(A \otimes B \otimes \mathbb{K}(\mathcal{H}))$$
$$j_{B}: B \xrightarrow{\gamma_{B}} B \otimes C(QISO(\mathcal{B})) \xrightarrow{(\mathrm{id}_{B} \otimes \pi_{1})_{23}} \mathcal{M}(A \otimes B \otimes \mathbb{K}(\mathcal{H}))$$

► $A \boxtimes_{\chi} B := j_A(A)j_B(B)$ is a unital C*-algebra and does not dependent on π_1 and π_2 . $A \boxtimes_{\chi} B$ is called the *twisted tensor product* of A and B. *Orthogonal filtration on* $A \boxtimes_{\chi} B$

• The canonical coactions γ_A and γ_B preserves the states τ_A and τ_B .

This allows to define a functional

$$\tau_A \boxtimes_{\chi} \tau_B \colon A \boxtimes_{\chi} B \to \mathbb{C}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

by restricting $\tau_A \otimes \tau_B \otimes \operatorname{id}_{\mathbb{B}(\mathcal{H})}$ on $A \boxtimes_{\chi} B$.

Proposition (Bhowmick-Mandal-R.-Skalski, 2018)

The functional $\tau_A \boxtimes_{\chi} \tau_B$ is a faithful state on $A \boxtimes_{\chi} B$ and the triple $\mathcal{A} \boxtimes_{\chi} \mathcal{B} := (A \boxtimes_{\chi} B, \tau_A \boxtimes_{\chi} \tau_B, \{j_A(A_i)j_B(B_j)\}_{i,j\geq 0})$ is an orthogonal filtration of $A \boxtimes_{\chi} B$.

Generalised Drinfeld's double

There exists a CQG, denoted by D_χ, with canonical injective CQG homomorphisms

 $\rho \colon \mathrm{C}(\mathrm{QISO}(\mathcal{A})) \to \mathrm{C}(\mathfrak{D}_{\chi})$ $\theta \colon \mathrm{C}(\mathrm{QISO}(\mathcal{B})) \to \mathrm{C}(\mathfrak{D}_{\chi})$

such that $C(\mathfrak{D}_{\chi}) = \rho(C(QISO(\mathcal{A})))\theta(C(QISO(\mathcal{B})))$ is a unital C*-algebra with the comultiplication map defined by

$$\begin{split} &\Delta_{\mathfrak{D}_{\chi}}(\rho(x)) := (\rho \otimes \rho) \Delta_{\text{QISO}(\mathcal{A})}(x) \qquad \text{for all } x \in \mathrm{C}(\text{QISO}(\mathcal{A})), \\ &\Delta_{\mathfrak{D}_{\chi}}(\theta(y)) := (\theta \otimes \theta) \Delta_{\text{QISO}(\mathcal{B})}(y) \qquad \text{for all } y \in \mathrm{C}(\text{QISO}(\mathcal{B})). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The pair (ρ, θ) is called the *(canonical)* χ *-Drinfeld pair*:

$$\chi_{12} ((\mathrm{id} \otimes \rho) W^{\mathrm{QISO}(\mathcal{A})})_{13} ((\mathrm{id} \otimes \theta) W^{\mathrm{QISO}(\mathcal{B})})_{23} = ((\mathrm{id} \otimes \theta) W^{\mathrm{QISO}(\mathcal{B})})_{23} ((\mathrm{id} \otimes \rho) W^{\mathrm{QISO}(\mathcal{A})})_{13} \chi_{12}.$$

There exists the *universal* χ -*Drinfeld pair* (ρ^{u}, θ^{u}) such that

 $\mathbf{C}^{\mathbf{u}}(\mathfrak{D}_{\chi}) = \rho^{\mathbf{u}}(\mathbf{C}^{\mathbf{u}}(\mathbf{QISO}(\mathcal{A})))\theta^{\mathbf{u}}(\mathbf{C}(\mathbf{QISO}(\mathcal{B}))).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Actions of \mathfrak{D}_{χ} on $A \boxtimes_{\chi} B$

Theorem (R., 2015)

There is a canonical injective coaction

$$\gamma_A \Join_{\chi} \gamma_B \colon A \boxtimes_{\chi} B \to A \boxtimes_{\chi} B \otimes \mathrm{C}(\mathfrak{D}_{\chi})$$

defined by

$$\gamma_A \boxtimes_{\chi} \gamma_B(j_A(a)) := (j_A \otimes \rho)\gamma_A(a) \quad \text{for all } a \in A,$$

 $\gamma_A \boxtimes_{\chi} \gamma_B(j_B(b)) := (j_B \otimes \theta)\gamma_B(b) \quad \text{for all } b \in B.$

<ロト <回ト < 注ト < 注ト = 注

Quantum Symmetry of the twisted tensor products

Theorem (Bhowmick-Mandal-R.-Skalski, 2018)

- ► There is a coction γ^{u} : $A \boxtimes_{\chi} B \to A \boxtimes_{\chi} B \otimes C^{u}(\mathfrak{D}_{\chi})$ of $C^{u}(\mathfrak{D}_{\chi})$ on $A \boxtimes_{\chi} B$ such that
 - $\begin{aligned} \gamma^{\mathrm{u}}(j_A(a)) &:= (j_A \otimes \rho^{\mathrm{u}}) \gamma^{\mathrm{u}}_A(a) & \text{ for all } a \in A, \\ \gamma^{\mathrm{u}}(j_B(b)) &:= (j_B \otimes \theta^{\mathrm{u}}) \gamma^{\mathrm{u}}_B(b) & \text{ for all } b \in B. \end{aligned}$

< ロ > < 部 > < 표 > < 표 > · 표 ·

• Moreover, the quantum symmetry group $QISO(\mathcal{A} \boxtimes_{\chi} \mathcal{B})$ is isomorphic to \mathfrak{D}_{χ} .

Corollary

The quantum symmetry group $QISO(\mathcal{A} \otimes \mathcal{B})$ *is isomorphic to* $QISO(\mathcal{A}) \times QISO(\mathcal{B})$.

Quantum Symmetry of the twisted tensor products

Theorem (Bhowmick-Mandal-R.-Skalski, 2018)

- ► There is a coction γ^{u} : $A \boxtimes_{\chi} B \to A \boxtimes_{\chi} B \otimes C^{u}(\mathfrak{D}_{\chi})$ of $C^{u}(\mathfrak{D}_{\chi})$ on $A \boxtimes_{\chi} B$ such that
 - $\begin{aligned} \gamma^{\mathrm{u}}(j_A(a)) &:= (j_A \otimes \rho^{\mathrm{u}}) \gamma^{\mathrm{u}}_A(a) & \text{for all } a \in A, \\ \gamma^{\mathrm{u}}(j_B(b)) &:= (j_B \otimes \theta^{\mathrm{u}}) \gamma^{\mathrm{u}}_B(b) & \text{for all } b \in B. \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• Moreover, the quantum symmetry group $QISO(\mathcal{A} \boxtimes_{\chi} \mathcal{B})$ is isomorphic to \mathfrak{D}_{χ} .

Corollary

The quantum symmetry group $QISO(\mathcal{A} \otimes \mathcal{B})$ is isomorphic to $QISO(\mathcal{A}) \times QISO(\mathcal{B})$.

Examples coming from the Rieffel deformation

- ► Let *A* and *B* be unital C*-algebras equipped with orthogonal filtrations.
- Assume that G and H are compact abelian groups acting respectively on C and on D in the filtration preserving way (so that they are objects of respective categories).
- Moreover, let $\chi : \hat{G} \times \hat{H} \to \mathbb{T}$ be a bicharacter.
- ► The coactions $\alpha_A : A \to A \otimes C(G)$ and $\alpha_B : B \to B \otimes C(H)$ define a canonical coaction γ of $C(K) := C(G \times H)$ on $E := A \otimes B$.
- Furthermore χ defines a bicharacter ψ on \hat{K} via the formula

$$\psi: \hat{K} \times \hat{K} \to \mathbb{T}, \ \psi((g_1, h_1), \ (g_2, h_2)) = \chi(g_2, h_1)^{-1}.$$

- ► It defines a 2-cocycle on the group \hat{K} . The Rieffel deformation of the data (E, γ, ψ) yields a new unital C*-algebra E_{ψ} .
- Meyer-R.-Woronowicz, 2014: E_{ψ} is isomorphic to $A \boxtimes_{\psi} B$.

Reduced crossed product revisited

- Let the triple $\mathcal{A} = (A, \tau_A, \{A_i\}_{i \ge 0})$ will denote an orthogonal filtration of a unital C*-algebra A.
- Let Γ is a finitely generated discrete group having an coaction $\beta: A \to \mathcal{M}(A \otimes C_0(\Gamma))$ of $C_0(\Gamma)$ on *A*. Denote \mathcal{B} be the orthogonal filtration on $C_r^*(\Gamma)$.

Recall

- $a\lambda_g$ for $\beta(a)(1 \otimes \lambda_g)$, where $a \in A, g \in \Gamma$.
- ► $\tau := \tau_A \circ \tau' \in S(A \rtimes_{\beta, \mathbf{r}} \Gamma)$, where τ' is the canonical conditional expectation from $A \rtimes_{\beta, \mathbf{r}} \Gamma$ onto *A* defined by the continuous linear extension of the prescription $\tau'(\sum_{a} a_g \lambda_g) = a_e$.

Finally, given the data as above define for each $i, j \ge 0$

$$A_{ij} = \operatorname{span}\{a_i \lambda_{\gamma_j} \mid a_i \in A_i, l(\gamma_j) = j\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantum symmetry of the reduced crossed products

"The hypothesis"

There is a quantum group homomorphism

$$f \colon \mathrm{C}^{\mathrm{u}}(\mathrm{QISO}(\mathcal{A})) \to \mathrm{C}_{\mathrm{b}}(\Gamma).$$

Theorem (Bhowmick-Mandal-R.-Skalski, 2018)

Define $\beta = (\mathrm{id}_A \otimes f)\gamma_A^{\mathrm{u}}$, where γ_A^{u} is the canonical universal coaction of $\mathrm{C}^{\mathrm{u}}(\mathrm{QISO}(\mathcal{A}))$ on A.

- The triplet (A ⋊_{β,r} Γ, τ, (A_{ij})_{i,j≥0}) is an orthogonal filtration, denoted A ⋊_β B.
- There exists a canonical bicharacter $\chi \in \mathcal{U}(C_0(QISO(\mathcal{A})) \otimes C_0(QISO(\mathcal{B})) \text{ induced by the dual of the } quantum group homomorphisms <math>f$ and $C_0(QISO(\mathcal{B}))) \to C_r^*(\Gamma)$.
- QISO($\mathcal{A} \rtimes_{\beta} \mathcal{B}$) is isomorphic to \mathfrak{D}_{χ} .

Quantum symmetry of the reduced crossed products

"The hypothesis"

There is a quantum group homomorphism

 $f \colon \mathrm{C}^{\mathrm{u}}(\mathrm{QISO}(\mathcal{A})) \to \mathrm{C}_{\mathrm{b}}(\Gamma).$

Theorem (Bhowmick-Mandal-R.-Skalski, 2018)

Define $\beta = (\mathrm{id}_A \otimes f)\gamma_A^{\mathrm{u}}$, where γ_A^{u} is the canonical universal coaction of $\mathrm{C}^{\mathrm{u}}(\mathrm{QISO}(\mathcal{A}))$ on A.

- The triplet (A ⋊_{β,r} Γ, τ, (A_{ij})_{i,j≥0}) is an orthogonal filtration, denoted A ⋊_β B.
- ► There exists a canonical bicharacter $\chi \in \mathcal{U}(C_0(QISO(\mathcal{A})) \otimes C_0(QISO(\mathcal{B})))$ induced by the dual of the quantum group homomorphisms *f* and $C_0(QISO(\mathcal{B}))) \to C_r^*(\Gamma)$.

• QISO($\mathcal{A} \rtimes_{\beta} \mathcal{B}$) is isomorphic to \mathfrak{D}_{χ} .

How practical the "hypothesis" is?

For a fixed natural number *n* we define a group homomorphism $g \colon \mathbb{Z}^n \to \mathbb{T}^n$ by

$$g(m_1,m_2,\cdots,m_n):=(\lambda_1^{m_1},\lambda_2^{m_2},\cdots,\lambda_n^{m_n}).$$

This defines a quantum group homomorphism $\hat{g} \colon C(\mathbb{T}^n) \to C_b(\mathbb{Z}^n)$.

- Suppose that there is a quantum group homomorphism h: C^u(QISO(A)) → C(Tⁿ)
- ► The composition $f = \hat{g} \circ h$: $C^u(QISO(\mathcal{A})) \to C_b(\mathbb{Z}^n)$ is a quantum group homomorphism.
- Moreover, we get a coaction $\beta : A \to \mathcal{M}(A \otimes C_0(\mathbb{Z}^n))$ of $C_0(\mathbb{Z}^n)$ on A defined by $\beta := (\mathrm{id}_A \otimes f)\gamma_A^{\mathrm{u}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

How practical the "hypothesis" is?

For a fixed natural number *n* we define a group homomorphism $g \colon \mathbb{Z}^n \to \mathbb{T}^n$ by

$$g(m_1,m_2,\cdots,m_n):=(\lambda_1^{m_1},\lambda_2^{m_2},\cdots,\lambda_n^{m_n}).$$

This defines a quantum group homomorphism $\hat{g} \colon C(\mathbb{T}^n) \to C_b(\mathbb{Z}^n)$.

- Suppose that there is a quantum group homomorphism h: C^u(QISO(A)) → C(Tⁿ).
- ► The composition $f = \hat{g} \circ h$: $C^u(QISO(\mathcal{A})) \to C_b(\mathbb{Z}^n)$ is a quantum group homomorphism.
- Moreover, we get a coaction $\beta : A \to \mathcal{M}(A \otimes C_0(\mathbb{Z}^n))$ of $C_0(\mathbb{Z}^n)$ on A defined by $\beta := (\mathrm{id}_A \otimes f)\gamma_A^{\mathrm{u}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- *I.* A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- For q ∈ (0, 1), A = C(G_q) for a q-deformation of a compact semisimple Lie group, τ = Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q.
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = \mathcal{O}_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- *I*. A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- 2. For $q \in (0, 1)$, $A = C(G_q)$ for a *q*-deformation of a compact semisimple Lie group, $\tau =$ Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q .
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = O_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- *1.* A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- 2. For $q \in (0, 1)$, $A = C(G_q)$ for a *q*-deformation of a compact semisimple Lie group, $\tau =$ Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q .
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = \mathcal{O}_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- *1.* A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- 2. For $q \in (0, 1)$, $A = C(G_q)$ for a *q*-deformation of a compact semisimple Lie group, $\tau =$ Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q .
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = O_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- *1.* A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- 2. For $q \in (0, 1)$, $A = C(G_q)$ for a *q*-deformation of a compact semisimple Lie group, $\tau =$ Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q .
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = O_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).
- 6. Bunce-Deddens C*-algebra.

- *1.* A = C(M) for a compact Riemannian manifold $M, \tau := \int d\text{vol}$, orthogonal filtration comes from the eigen spaces of Hodge-Dirac operator $d + d^*$.
- 2. For $q \in (0, 1)$, $A = C(G_q)$ for a *q*-deformation of a compact semisimple Lie group, $\tau =$ Haar state, orthogonal filtration comes from the matrix coefficients of irreducible representations of G_q .
- 3. $A = C(\mathbb{G}_q/\mathbb{H})$ (quantum homogeneous spaces of G_q by a closed quantum subgroup \mathbb{H}).
- 4. $A = O_N$, orthogonal filtration was constructed by Banica-Skalski.
- 5. Twisted crossed products $A \rtimes_{\beta,r,\Omega} \Gamma$ (provided β satisfies the condition).
- 6. Bunce-Deddens C*-algebra.

A counterexample: $C^*(\mathbb{Z}_9) \rtimes_{\beta,r} \mathbb{Z}_3$ revisited

- ► Recall that the vector space dimension of C(QISO(C*(Z₉) ⋊_{β,r} Z₃)) is 54, whereas vector space dimension of C(QISO(C*(Z₉))) ⊗ C(QISO(C*(Z₃))) equals (9+9)(3+3) = 108.
- ► Hence, QISO(C*(Z₉) ⋊_{β,r} Z₃) is not isomorphic to the Drinfeld double of QISO(C*(Z₉)) and QISO(C*(Z₃)) with respect to any bicharacter.

Final remark

It seems that "the hypothesis" is necessary to have $QISO(A \rtimes_{r,\beta} \Gamma)$ to be isomorphic to the Drinfeld's double of the quantum symmetry group of the factors with respect to a bicharacter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

A counterexample: $C^*(\mathbb{Z}_9) \rtimes_{\beta,r} \mathbb{Z}_3$ revisited

- ► Recall that the vector space dimension of C(QISO(C*(Z₉) ⋊_{β,r} Z₃)) is 54, whereas vector space dimension of C(QISO(C*(Z₉))) ⊗ C(QISO(C*(Z₃))) equals (9+9)(3+3) = 108.
- ► Hence, QISO(C*(Z₉) ⋊_{β,r} Z₃) is not isomorphic to the Drinfeld double of QISO(C*(Z₉)) and QISO(C*(Z₃)) with respect to any bicharacter.

Final remark

It seems that "the hypothesis" is necessary to have $\text{QISO}(A \rtimes_{r,\beta} \Gamma)$ to be isomorphic to the Drinfeld's double of the quantum symmetry group of the factors with respect to a bicharacter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで